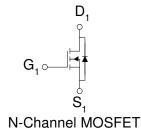

Analog Power AM1432NE

N-Channel 30V (D-S) MOSFET


These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

al applications are DC-DC	$V_{DS}(V)$	$\mathbf{r_{DS(on)}}\left(\Omega \right)$	$I_{D}(A)$
wer management in portable and roducts such as computers,	30	$0.033 @ V_{GS} = 10 V$	5.7
cards, cellular and cordless	30	$0.045 @ V_{GS} = 4.5V$	4.9
	0	D	

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SC70-6 saves board space
- Fast switching speed
- High performance trench technology

PRODUCT SUMMARY

Protected

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)						
Parameter			Maximum	Units		
Drain-Source Voltage		V_{DS}	30	V		
Gate-Source Voltage	V_{GS}	±20	V			
	$T_A=25^{\circ}C$	Ι,	5.7			
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1 _D	4.6	A		
Pulsed Drain Current ^b		I_{DM}	±20			
Continuous Source Current (Diode Conduction) ^a		I_S	1.6	A		
D D: a	$T_A=25^{\circ}C$	D	1.56	W		
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	P_{D}	0.81	VV		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Maximum	Units		
Maximum Junction-to-Ambient ^a	t <= 5 sec	D	100	0000	
	Steady-State	R_{THJA}	166	C/W	

1

Notes

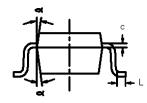
- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Analog Power AM1432NE

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter	Cymbal	Treat Constitutions	Limits			T 124	
Parameter	Symbol	Symbol Test Conditions		Тур	Max	Unit	
Static							
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	1			V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ	
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ	
Zero Gate Voltage Drain Current	*D88	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10		
On-State Drain Current ^A	$I_{D(on)}$	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10			A	
D : G C D : A		$V_{GS} = 10 \text{ V}, I_D = 1 \text{ A}$			33	mΩ	
Drain-Source On-Resistance ^A	$r_{\mathrm{DS(on)}}$	$V_{GS} = 4.5 \text{ V}, I_{D} = 1 \text{ A}$			45	1112.2	
Forward Tranconductance ^A	$g_{ m fs}$	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ A}$		11.3		S	
Diode Forward Voltage	V_{SD}	$I_S = 1 A, V_{GS} = 0 V$		0.75		V	
Dynamic ^b							
Total Gate Charge	Q_{g}			4			
Gate-Source Charge	Q_{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 1 \text{ A}$		1		пC	
Gate-Drain Charge	Q_{gd}			1		1	
Turn-On Delay Time	$t_{d(on)}$	and the second s		4			
Rise Time	$t_{\rm r}$	$V_{DD} = 10 \text{ V}, R_L = 15 \Omega, I_D = 1 \text{ A},$		10			
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = 4.5 \text{ V}$		20		ns	
Fall-Time	t_{f}			10		1	

Notes

a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.


b. Guaranteed by design, not subject to production testing.

Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.

Package Information

SC-70: 6LEAD

	MILLIMETERS			INCHES		
Dim	Min	Nom	Мах	Min	Nom	Max
Α	0.90	_	1.10	0.035	_	0.043
A ₁	_	_	0.10	_	_	0.004
A ₂	0.80	_	1.00	0.031	_	0.039
b	0.15	_	0.30	0.006	_	0.012
С	0.10	_	0.25	0.004	_	0.010
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E ₁	1.15	1.25	1.35	0.045	0.049	0.053
е	0.65BSC		0.026BSC			
e ₁	1.20	1.30	1.40	0.047	0.051	0.055
L	0.10	0.20	0.30	0.004	0.008	0.012
4	7°Nom			7°Nom		